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Overview

• What type of robust optimization techniques can be used with 
general MILP formulations?

• Driver application: sensor placement in water distribution networks

• Key issue: how can we bound risk while maximizing performance?
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Water Security

National Water Security Goals
– Protect long-term availability of national water resources
– Protect the operation of water utility distribution systems
– Protect water resources and infrastructure from improper use

Universal Vulnerabilities in Water Systems
– Plant access
– Source Water
– Water storage
– Water distribution



Slide 4

What is a water distribution network?

Drinking Water
• Water source
• Treatment facilities
• Transmission systems
• Distribution systems

Wastewater
• Wastewater source
• Collection system
• Treatment facility
• Receiving water body
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A Motivating Threat Scenario

Contaminant Injection

Risk: moderate-high
– Technically difficult to accomplish
– Potential terrorists fascinated by this prospect

Impact: public health impacts, network contamination impacts

Mitigation:
– Use of detection equipment

Response:
– Coordination with public health institutions
– Proactive identification of contaminant source
– Decontamination procedures
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Designing a Contaminant Warning System (CWS)

Technical Goal: placement of sensors for the CWS within a budget

Possible objectives:
– Minimize response time
– Minimize health impacts
– Minimize extent of contamination
– Minimize volume of water that enters the water network
– Minimize number of failed detections
– Minimize cost
– Minimize political risk…
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What data do we need for sensor placement?

• Population consumption
– Location and time
– Individual characteristics: health, age

• Attack risks
– Location and time
– Contaminant type
– Duration of impact

• Network model
– Physical topology
– Demand characteristics through time
– Variability in demands

Note: there are major uncertainties in many of this data!
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Integer Programming for Sensor Placement

IPs can be used to model sensor placement for water security
– Berry et al (2003, 2004); Watson et al (2004)

Objective:

α – attack likelihood
w – attack impact
x – attack witness variable
s – sensor placement variable

IP model:
• Can capture different objectives/networks
• Can be solved with COTS software

– We need a 64-bit workstation to solve large instances
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Two RO Approaches

Interval Uncertainties
– Data lies within a specified interval about an estimated value
– Formulate models that find the best solution for all possible 

uncertain values within the interval
– Consider side-constraints that exploit additional knowledge 

about the uncertainties

Attack Location Uncertainties
– Contamination impact varies with attack location
– Formulate models that minimize or constrain the risk of a 

catastrophic attack
– Consider different notions of risk: worst-case, VaR, CVaR

Note: Our focus is on developing robust MILP models
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Interval Uncertainties

Idea: consider uncertainties as simple errors on given numerical
estimates

where

Note: This RO problem can be trivially reformulated as an IP model!
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Bounded Interval Uncertainties

Example: population estimates
– The total population is probably well-known
– The estimated population at any given site may have 

considerable error

Modeling interval uncertainties as a sum-restricted ball

Note: this model of uncertainty works for various model parameters
– attack probabilities, consumption demands, etc.
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Optimization with Bounded Uncertainties

Idea: minimize the worst case value with bounded uncertainty 

where

We consider proportional uncertainty intervals to simplify our 
presentation…

There are two cases that reflect different applications/models
1. Linearly weighted uncertainty
2. Bilinear uncertainty
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Linearly Weighted Uncertainty

Example: minimizing extent of contamination (EC)
Objective:  

wai is the pipe length contaminated, which is well-known
αa is uncertain

RO formulation with bounded interval uncertainty

Idea: reformulate this RO formulation using the dual of this subproblem
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Solving Linearly Weighted RO Problems

The optimal solution for EC can be obtained by solving the following IP:

(LWRO)

Interval uncertainty can be addressed by solving a related MILP!
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Preliminary Experiments with LWRO

Network A: 97 junctions, 234 pipes Network B: 470 junctions, 1198 pipes
Network B: Uncertain Population
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A Special Case: Unweighted Uncertainties

Example: minimizing the number of failed detections (NF)
Objective: 

αa is uncertain

Theorem: The optimal solution to the problem

is the optimal solution to the problem

for all ε>0.

Conclusion: proportional interval uncertainty does not impact this formulation!

∑ ∑∈ ∈Aa Li aia xα

( ) ∑ ∑∈ ∈∈∈ Aa,ˆ
maxmin

Li aiaBXx
xα

εαα

∑ ∑∈ ∈∈ Aa
min

Li aiaXx
xα



Slide 17

Bilinearly Weighted Uncertainty

Example: minimizing the population exposed (PE)
Objective:  

wai is the population exposed to contaminant, which is uncertain
αa is uncertain

RO formulation with bounded interval uncertainty

This is NOT a MILP.

Note: even solving this bilinear maximization problem is hard!

∑ ∑∈ ∈Aa Li aiaia xwα

( )
( )

∑ ∑∈ ∈
∈
∈∈ Aa

,ˆ
,ˆ

maxmin
Li aiaia

wBw
BXx

xwα
ε
εαα



Slide 18

Solving Bilinearly Weighted RO Problems

1. Consider the impact of uncertainties for αa and wa independently 
(using the linearly weighted technique)

2. Sample one of the uncertainties and solve a problem of the form

This can be reformulated as a MILP.

3. Build a custom MINLP solver
– Linearize the subproblem problem using standard techniques 

(McCormick’s linear relaxations)
– Reformulate as a dual to provide an overall lower bound
– Branch on choice variables and uncertainty regions
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Solving Bilinearly Weighted Problems    (cont’d)

4. Heuristically search X and evaluate solutions using the bilinear 
subproblem.
• May not be computationally feasible
• It is NP-hard to solve this subproblem
• Can compute approximation values (using McCormick bounds)
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Attack Location Uncertainties

Idea: consider the risk of a catastrophic attack

Goal: limit the risk that the worst impacts have a big effect
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Risk Measures of Interest

• Worst-Case
– The value of the worst impact

• Value-at-Risk (VaR)
– VaR(x,γ) is the value of the 1−γ quantile of the impact 

distribution

• Conditional Value at Risk
– Tail Conditional Expectation (TCE) is the average loss in worst 

100γ percent of the impact distribution
– CVaR(x,γ) is an approximation to TCE
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Examples of Risk Measures
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Defining CVaR
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Risk-Constrained MILPs

Goal: Minimize expected impact while constraining the risk of a 
catastrophic attack

Worst-case MILPs are easy to formulate

VaR-constrained formulations are messy
– Can formulate with a simple quadratic constraint
– Can use binary indicator variables in a MILP formulation

CVaR-constrained formulation…
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CVaR-Constrained Formulation

Let Ω be a bound on CVaR

The following formulation bounds CVaR

Note: we can include CVaR in both the objective as well!
Note: v is VaR when the CVaR constraint is binding
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Experimental Experience with CVaR MILPs

Considered Performance/CVaR trade-off for Network B
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Runtime vs. Optimal CVaR
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Empirical Observations

1. There appears to be a clear spike in the runtime
• In many trials we were not able to find (near-)optimal solns
• CPLEX had difficulty finding good incumbent solutions
• We weren’t able to solve a minimum CVaR model on this 

network

2. This formulation consistently found dominated solutions
• Need an additional bias to guarantee pareto optimal solutions
• Found undominated solutions with weighted risk objective
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Ongoing Work

• Developing methods to more efficiently enumerate pareto front
– Considering bi-objective MILP methods

• Working on reduced fidelity models that aggregate sensor locations
– Fast solutions with guaranteed approximation bounds
– May lead to branch-and-price solver

• Analyzing the structure of VaR/CVaR risk measures in MILP 
formulations

– E.g. tighter-constrained MILPs seem to take longer.  Why?
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